Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros













Base de datos
Tipo de estudio
Intervalo de año de publicación
1.
Commun Biol ; 7(1): 425, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589539

RESUMEN

Treatment of pneumococcal infections is limited by antibiotic resistance and exacerbation of disease by bacterial lysis releasing pneumolysin toxin and other inflammatory factors. We identified a previously uncharacterized peptide in the Klebsiella pneumoniae secretome, which enters Streptococcus pneumoniae via its AmiA-AliA/AliB permease. Subsequent downregulation of genes for amino acid biosynthesis and peptide uptake was associated with reduction of pneumococcal growth in defined medium and human cerebrospinal fluid, irregular cell shape, decreased chain length and decreased genetic transformation. The bacteriostatic effect was specific to S. pneumoniae and Streptococcus pseudopneumoniae with no effect on Streptococcus mitis, Haemophilus influenzae, Staphylococcus aureus or K. pneumoniae. Peptide sequence and length were crucial to growth suppression. The peptide reduced pneumococcal adherence to primary human airway epithelial cell cultures and colonization of rat nasopharynx, without toxicity. We identified a peptide with potential as a therapeutic for pneumococcal diseases suppressing growth of multiple clinical isolates, including antibiotic resistant strains, while avoiding bacterial lysis and dysbiosis.


Asunto(s)
Infecciones Neumocócicas , Streptococcus pneumoniae , Ratas , Animales , Humanos , Klebsiella pneumoniae , Proteínas de Transporte de Membrana/metabolismo , Nasofaringe/microbiología , Infecciones Neumocócicas/microbiología , Péptidos/farmacología , Péptidos/metabolismo
2.
Front Cell Infect Microbiol ; 13: 1279119, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38094742

RESUMEN

Background: The polysaccharide capsule of Streptococcus pneumoniae plays a major role in virulence, adherence to epithelial cells, and overall survival of the bacterium in the human host. Galactose, mannose, and N-acetylglucosamine (GlcNAc) are likely to be relevant for metabolization in the nasopharynx, while glucose is the primary carbon source in the blood. In this study, we aim to further the understanding of the influence of carbon sources on pneumococcal growth, capsule biosynthesis, and subsequent adherence potential. Methods: We tested the growth behavior of clinical wild-type and capsule knockout S. pneumoniae strains, using galactose, GlcNAc, mannose, and glucose as carbon source for growth. We measured capsule thickness and quantified capsule precursors by fluorescein isothiocyanate (FITC)-dextran exclusion assays and 31P-nuclear magnetic resonance measurements, respectively. We also performed epithelial adherence assays using Detroit 562 cells and performed a transcriptome analysis (RNA sequencing). Results: We observed a reduced growth in galactose, mannose, and GlcNAc compared to growth in glucose and found capsular size reductions in mannose and GlcNAc compared to galactose and glucose. Additionally, capsular precursor measurements of uridine diphosphate-(UDP)-glucose and UDP-galactose showed less accumulation of precursors in GlcNAc or mannose than in glucose and galactose, indicating a possible link with the received capsular thickness measurements. Epithelial adherence assays showed an increase in adherence potential for a pneumococcal strain, when grown in mannose compared to glucose. Finally, transcriptome analysis of four clinical isolates revealed not only strain specific but also common carbon source-specific gene expression. Conclusion: Our findings may indicate a careful adaption of the lifestyle of S. pneumoniae according to the monosaccharides encountered in the respective human niche.


Asunto(s)
Galactosa , Streptococcus pneumoniae , Humanos , Streptococcus pneumoniae/metabolismo , Carbono/metabolismo , Manosa , Glucosa/metabolismo , Uridina Difosfato/metabolismo , Cápsulas Bacterianas/genética
3.
Sci Rep ; 12(1): 22268, 2022 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-36564446

RESUMEN

Streptococcus pneumoniae colonizes the human nasopharynx, a multi-species microbial niche. Pneumococcal Ami-AliA/AliB oligopeptide permease is an ABC transporter involved in environmental sensing with peptides AKTIKITQTR, FNEMQPIVDRQ, and AIQSEKARKHN identified as ligands of its substrate binding proteins AmiA, AliA, and AliB, respectively. These sequences match ribosomal proteins of multiple bacterial species, including Klebsiella pneumoniae. By mass spectrometry, we identified such peptides in the Klebsiella pneumoniae secretome. AmiA and AliA peptide ligands suppressed pneumococcal growth, but the effect was dependent on peptide length. Growth was suppressed for diverse pneumococci, including antibiotic-resistant strains, but not other bacterial species tested, with the exception of Streptococcus pseudopneumoniae, whose growth was suppressed by the AmiA peptide ligand. By multiple sequence alignments and protein and peptide binding site predictions, for AmiA we have identified the location of an amino acid in the putative binding site whose mutation appears to result in loss of response to the peptide. Our results indicate that pneumococci sense the presence of Klebsiella pneumoniae peptides in the environment.


Asunto(s)
Infecciones Neumocócicas , Streptococcus pneumoniae , Humanos , Streptococcus pneumoniae/genética , Klebsiella pneumoniae/metabolismo , Ligandos , Péptidos/farmacología , Péptidos/metabolismo , Proteínas Portadoras/metabolismo , Proteínas Bacterianas/metabolismo
4.
Microb Cell Fact ; 21(1): 236, 2022 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-36368990

RESUMEN

Bacteriocins are ribosomally synthesized antimicrobial peptides, that either kill target bacteria or inhibit their growth. Bacteriocins are used in food preservation and are of increasing interest as potential alternatives to conventional antibiotics. In the present study, we show that Lactococcus petauri B1726, a strain isolated from fermented balsam pear, produces a heat-stable and protease-sensitive compound. Following genome sequencing, a gene cluster for production of a class IId bacteriocin was identified consisting of garQ (encoding for the bacteriocin garvicin Q), garI (for a putative immunity protein), garC, and garD (putative transporter proteins). Growth conditions were optimized for increased bacteriocin activity in supernatants of L. petauri B1726 and purification and mass spectrometry identified the compound as garvicin Q. Further experiments suggest that garvicin Q adsorbs to biomass of various susceptible and insusceptible bacteria and support the hypothesis that garvicin Q requires a mannose-family phosphotransferase system (PTSMan) as receptor to kill target bacteria by disruption of membrane integrity. Heterologous expression of a synthetic garQICD operon was established in Corynebacterium glutamicum demonstrating that genes garQICD are responsible for biosynthesis and secretion of garvicin Q. Moreover, production of garvicin Q by the recombinant C. glutamicum strain was improved by using a defined medium yet product levels were still considerably lower than with the natural L. petauri B1726 producer strain.Collectively, our data identifies the genetic basis for production of the bacteriocin garvicin Q by L. petauri B1726 and provides insights into the receptor and mode of action of garvicin Q. Moreover, we successfully performed first attempts towards biotechnological production of this interesting bacteriocin using natural and heterologous hosts.


Asunto(s)
Bacteriocinas , Humanos , Bacteriocinas/farmacología , Antibacterianos/farmacología , Operón , Bacterias/metabolismo
5.
Front Cell Infect Microbiol ; 12: 1106063, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36683678

RESUMEN

Introduction: Streptococcus pneumoniae bacteria cause life-threatening invasive pneumococcal disease (IPD), including meningitis. Pneumococci are classified into serotypes, determined by differences in capsular polysaccharide and both serotype and pneumolysin toxin are associated with disease severity. Strains of serotype 8, ST 53, are increasing in prevalence in IPD in several countries. Methods: Here we tested the virulence of such an isolate in a rat model of meningitis in comparison with a serotype 15B and a serotype 14 isolate. All three were isolated from meningitis patients in South Africa in 2019, where serotype 8 is currently the most common serotype in IPD. Results and Discussion: Only the serotype 8 isolate was hypervirulent causing brain injury and a high mortality rate. It induced a greater inflammatory cytokine response than either the serotype 15B or 14 strain in the rat model and from primary mixed-glia cells isolated from mouse brains. It had the thickest capsule of the three strains and produced non-haemolytic pneumolysin. Pneumolysin-sequestering liposomes reduced the neuroinflammatory cytokine response in vitro indicating that liposomes have the potential to be an effective adjuvant therapy even for hypervirulent pneumococcal strains with non-haemolytic pneumolysin.


Asunto(s)
Meningitis , Infecciones Neumocócicas , Ratones , Ratas , Animales , Serogrupo , Liposomas , Streptococcus pneumoniae , Infecciones Neumocócicas/microbiología , Citocinas , Inflamación , Vacunas Neumococicas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA